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Abstract. We study the jam phase of the deterministic traffic model in two dimensions.
Within the jam phase, there is a phase transition, from a self-organized jam (formed by initial
synchronization followed by jamming), to a random-jam structure. Thebackboneof the jam is
defined and used to analyse self-organization in the jam. The fractal dimension and interparticle
correlations on the backbone indicate a continous phase transition at densitypc with critical
exponentµ, which are characterized through simulations.

Models of traffic flow that have recently been studied extensively [1–3] have revealed a
wealth of interesting behaviour such as phase transitions and self-organization [4], kinematic
waves [5] and long-range spatio-temporal correlations, evidenced, for example as 1/f noise
[6, 7]. One of the simplest of such models is the deterministic cellular automaton (CA),
introduced by Bihamet al [2] (BML). This model for traffic flow in two dimensions appears
to show a kinetic first-order transition from a low-density freely moving phase to a high-
density jammed or blocked phase. Mean-field treatments of this model [8] also predict a
transition from a moving to a jammed phase. The robustness of this jamming transition
is unclear, and indications are that similar transitions in related systems [9, 10] may not
survive in the thermodynamic limit [11].

The jammed phase, on the other hand, has been shown to have structure: the very high-
density jam is arandomstructure with exponentially suppressed correlations, while at lower
densities, the jam isself-organized, with long-ranged spatial correlations. By calculating
the diagonal correlation functions and fitting a power-law behaviour to them, Tadaki and
Kikuchi [12] reported the transition between a self-organized and a random jam atp = 0.52.

In this letter we study the transition between the self-organized and the random phases
of the traffic jam in the BML model to elucidate its existence and nature. We identify an
organizing subset of the jammed phase which reveals the change from a self-organized jam
to a random jam and study spatio-temporal correlations, as well as the kinetics leading to
the two different phases.

In the jam phase, there is a single cluster that spans the entire system. We examine the
backbone of this traffic jam, which is theessentialstructure preventing motion of cars. Our
results on the behaviour of the fractal characteristics of the backbone, and the interparticle
correlations on the backbone show acontinuoustransition between the self-organized and
random jam, and also clearly rule out any transition atp = 0.52 as reported in [12].

The deterministic traffic model introduced by Bihamet al [2] is, like other CA models
of traffic flow, essentially a lattice gas system with two species of particles. It is defined
as follows. On aL × L square lattice in two-dimensions, there aren↑ cars which move
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only upwards (S–N) andn→ cars which move only rightward (W–E), distributed at random
sites. The dynamical rules are simple:

(i) a car can only move to a neighbouring empty site;
(ii) ↑ and→ cars move at alternate time steps;
(iii) all cars of a given type attempt to move simultaneously (parallel updating).
The density of cars isp = p↑ + p→ = (n↑ + n→)/L2, and the mean velocity of

the system is the fraction of cars that move in two time steps,〈v(t)〉 = nmov/ntot, where
ntot = n↑ + n→. The isotropic casen↑ = n→ = pL2/2 is considered.

At low density, all cars eventually move [2, 13] andv → 1: this is the moving phase. In
this phase there is self-organization along the NW–SE diagonals, each of which is occupied
only by cars of a single type, to avoid collisions in the freely flowing phase [13]. In a
typical moving phase, alternate diagonals are occupied by cars of opposite type, and the
diagonals flow freely, having been synchronized to avoid collisions as explained above.

Figure 1. Typical jamming configuration in a 32× 32 system in the (a) low (p = 0.45) and
(b) high (p = 0.80) density phase. Backbone cars are shown as�s, dangling→ cars as♦s,
and dangling↑ cars asMs.

Upon increasing the density of carsp above the system size dependentpt (pt = 0.315
for 512× 512 lattices) there is ajamming transitionwhen the system eventually reaches a
configuration when no car can move: all cars are immobile in a single global cluster which
spans the lattice. In this phase,v → 0, and the jam extends across the SW–NE diagonals
of the lattice. The abrupt nature of the transition fromv = 1 to v = 0 indicates a dynamical
first-order transition. The nature of the jammed phases shows a gradual change from a
single strip, nearly diagonal band of cars nearpt, (see figure 1(a)) to a multistrip, branched
structure for higher densities (See figure 1(b)). We examine this transition by considering
the backbone of the jam, which is described below.

Local jamming occurs when a car is blocked by another from moving ahead. Small
local jams form which grow in size, above a critical jam size, as the rate of car pile-up
exceeds the rate at which cars leave the upper-right region of the jam. The typical jam
consists of a backbone of cars which organize the jam structure, and much larger numbers
of dangling cars accumulated around them. To find the backbone of the jam, we reverse the
process by which dangling cars accumulate around the backbone, by iteratively removing
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those cars on the periphery of the cluster whose removal does not trigger an instability in
the jam [14].

We find the backbone to be fractal, both in the low-density self-organized regime when
the backbone is nearly diagonal (see figure 1(a)) or in the high-density random regime,
when it is extensively ramified (see figure 1(b)). The (capacity) fractal dimension of the
backbone,ν, is defined through

MB = `ν (1)

whereMB is the number of backbone cells at scale`.

Figure 2. Plot of the fractal dimensionν as function of density above the threshold. A clear
phase transition occurs atpc = 0.59± 0.02. Our results are for lattices of size 256 (♦) and 512
(+), and are averaged over several realizations.

Figure 2 shows the variation of the backbone fractal dimension with density. Forp

aroundpt, the fractal dimension remains almost constant, but with increasing density, there
is a clear change observed forp above a thresholdpc. This threshold is independent of
system size, reminiscent of a second-order phase transition. The smooth nature of the
transition indicates that self-organization will be noticeable at densities higher thanpc, as is
indeed observed. Least-squares fits [15] to the formν ∼ (p − pc)

µ givesµ = 0.52± 0.02,
while the threshold density is determined aspc = 0.59± 0.02 [16]. Our simulations were
carried out on lattices of sizeL = 256, 512 and 1024, and the critical pointpc was observed
to be independent of system size. The power-law dependence onp suggests a continous
phase transition. It should be noted that the same transition point can also be obtained by
looking at the entire jam as in [17], where the transition density was calculated to be near
the two-dimensional percolation threshold.

We now investigate why the jams in the low- and high-density phases are, respectively,
self-organized and random. Define the pair correlation function as

Cαβ(Er) =
∑

Ex
ρα(Ex)ρβ(Er + Ex) α, β ≡↑, → (2)

where ρα(Er), the density of cars of typeα at site Er, is one if that site is occupied by
a car of typeα and zero otherwise. In the limit of larger, ρα(Ex + Er) ≈ ρα(Er), which
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approaches the equilibrium car densityρα(Er) = p/2 independent of siteEr. Therefore,
Cαβ(r) → nαρβ = nαp/2 for larger.

Backbone correlation functions can be defined as in equation 2:

Cαβ(Er) =
′∑
Ex

ρα(Ex)ρβ(Er + Ex) (3)

with the prime on the summation indicating that the sum is only over sitesEx on the backbone.
In the jam, the number of cars of both species are equal, but on the backbone these can
differ (although the difference is usually small, by isotropy). The limiting values for the
correlation functions for the backbone are therefore

C↑↑(Er) = L2P↑P↑ (4)

C↑→(Er) = L2P↑P→ (5)

(whereNα andPα refer to the number and density ofα type cars on thebackboneonly)
which are normalized as follows:C↑↑(Er) → C↑↑(Er)/N↑, C↑→(Er) → C↑→(Er)/Navg where
Navg = (N↑ + N→)/2. Neglecting the small difference in the number of↑ and→ cars on
the backbone,C↑↑(Er) → P↑ andC↑→(Er) → Pavg = Navg/L

2 for larger.

Figure 3. C↑↑(r) for different densities. The lines, forL = 64, from bottom to top correspond to
the densitiesp = 0.85, 0.80, 0.75, . . . , 0.45. The lower densities fromp = 0.45–0.60 comprise
the self-organized phase, and car densities abovep = 0.65 constitute the random phase. Self
organized phase:♦, and random phase:�.

Shown in figure 3 are the averaged backbone self-correlation functions for up moving
cars,Cav

↑↑(r), where the averaging is performed over sites such thatx +y = r. For densities
below pc, Cav

↑↑(r) is independent of densityp, implying that the backbone has a spatially
similar structure throughout the low-density phase. Forp > pc, the limiting value of the
correlation functions increases with density: the number of cars belonging to the backbone
increases steadily abovepc, in agreement with the results on the fractal dimension which
show the mass of the backbone increasing steadily abovepc. A plot of the limiting value
Pα of Cav

↑↑(r) (see figure 4) shows an alternate means of detecting the phase transition type
of behaviour.
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Figure 4. Limiting value ofCav
↑↑(r) (taken atr = L/2) versusp for a 64×64 lattice. The break

in behaviour above and belowpc = 0.59± 0.02 is similar to figure 2, and is another way of
detecting the transition.

The lowest density configuration at which a jam may occur in the BML model consists
of a single globally connected zigzag jam extending across the system (p = 2L/L2).
A zigzag jam is a diagonal band of up and right moving cars in which each up mover
is blocked by a right mover above it, and a right mover blocked by an up mover to its
right. It is clear (see figure 1(a)) that the backbone of the jam for lower densities consists
mainly of these zigzag jams. For higher densities, branching and off-diagonal structures
become dominant and zigzag jams no longer form the largest section of the jam. To see
this distinction, one can study the self-correlation functionCav

↑↑(r) shown in figure 3, in the
high- and low-density regimes. The cross-correlation functionCav

↑→(r) (not shown) has a
similar structure, shifted right by one unit.

In the low p region where the system is largely dominated by zigzag jams, the (full)
correlation functionsCαβ(Er) have their largest values on a narrow band along the diagonal,
because of the self-organized nature of the zigzag jam. It can be seen that the autocorrelation
C↑↑(Er) get a large contribution alongErm = m(ı̂+̂ ), m = 1, . . . , N , and the cross correlation
C↑→(Er) get a large contribution alongEr ′

m = ̂ + Erm. It follows that both the averaged
correlations will display oscillatory structure. Maxima occur atr = 2k, 2k = 0, . . . , L for
Cav

↑↑(r), and atr = 2k − 1, 2k − 1 = 1, . . . , L − 1 for the cross correlationsCav
↑→(r). Our

results follow this behaviour, and fall on approximately the same curve. Finally, for higher
densities, the jam structure forms randomly, without self-organization, and oscillations are
suppressed (see figure 3). By including off-diagonal effects, our results on the correlation
functions are a cleaner and more graphic way of identifying the self-organized to random
transition, as opposed to the diagonal correlation function calculated in Tadaki and Kikuchi’s
paper [12].

Below pc, when the jam forms extremely slowly [2], for long times the cars are nearly
synchronized in an almost freely moving phase, with most of the cars organized into freely
flowing diagonals (FFD) along the SE–NW directions. This was first pointed out in the
original paper by Bihamet al [2], and explained theoretically by Shi [13]. When the
jam occurs, it is triggered by isolated asynchronous cars, which block the motion of a
FFD of opposite car type for sufficient time to desynchronize its motion with respect to
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its immediate neighbour FFDs, leading to formation of long zigzag jams. This correlation
present in the pre-equilibration phase thus eventually manifests itself in the final jam in the
form of long, self-organized zigzag jams [18]. In the high density phase, cars jam locally
before correlating their motion globally, leading to a jam with random structure.

The significance of the critical densitypc ≈ 3
5 is not clear, and seems to be unrelated

to the maximum density for which a flowing phase is possible (pmax = 2
3) [2, 13].

In summary, we see a clear indication of a transition between the self-organized jam
and the random jam in the BML model, by identifying thebackbonealong which the jam
organizes. The variation of the fractal dimension of the backbone gives evidence for a
continous phase transition at a critical densitypc = 0.59 ± 0.02 with a critical exponent
µ = 0.52± 0.02. The same transition point and exponent can be obtained by looking at
the fractal characteristics of the total jam, and not just the backbone [17]. However, by
focusing on the backbone, a cleaner signature for the phase transition is obtained and the
spatial correlations on the backbone clearly show a change from the self-organized to the
random structure, atpc. The backbone analysis also rules out a transition atp = 0.52,
which was identified by Tadaki and Kikuchi in [12] as the transition density above which
self-organization is suppressed. The change in behaviour abovepc is explained in terms of
a synchronization versus jamming scenario, in which the correlations in the pre-equilbration
phase manifest themselves as self-organization in the final jammed phase.

This continous transition is more robust than the first-order jamming transition itself,
in the following sense. There exists a zero density jamming configuration withν = 1,
while for very high densities,ν → 2. Since forp > pmin = 2L/L2, the fractal dimension
ν cannot change discontinously to 2, it is highly probable that the transition is robust,
unlike the jamming transition where simulations [2], and theoretical treatments [11] indicate
that the transition point decreases with increasing system size, eventually vanishing in the
thermodynamic limit. It may be noted, however, that the improved mean-field treatment
of the model given by Wanget al [8] predicts a system size independent transition at
p = 0.343, close to the critical pointp = 0.315 obtained by simulations on the largest
systems (512× 512).

We thank J́anos Kert́esz and Deepak Kumar for discussions. This work was supported
through grants from the Department of Science and Technology (SPS/MO-5/92) and the
CSIR, India.
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